Category Archives: Energy supply

China RE power 2005-2017 in five pictures

Share

See how renewable energy has developed in China since 2005.

See the graphs on Infogram

 

Renewable energy enables an early peak of CO2 emissions in China

Share

 China Renewable Energy Outlook shows pathways to a more sustainable energy future

China can reach its energy and environmental goals, but further policy measures are required for comprehensive energy transition to a sustainable low-carbon system. This is a main conclusion in the China Renewable Energy Outlook 2016, a new comprehensive study launched at the International Energy Transition Forum in Suzhou Monday 31 October 2016

“China needs energy for its further economic development but if we continue to rely heavily on coal, we will be stuck with an energy system, which pollutes, depletes our resources and confines us to the old industrial world”. Wang Zhongying, Vice Director General in ERI, director for China National Renewable Energy Centre and responsible for the China Renewable Energy Outlook, is serious about the problems created by the current energy system, but also optimistic about the future possibilities. “In tandem with the new industry revolution we must create a new energy revolution. Our analyses in the outlook show that renewable energy is ready to take the role as the back bone of the system within the next 15 years. A high share of renewables in the energy system in 2030 will not only reduce coal consumption and CO2 emissions substantially but also create a pathway towards a long-term low-carbon energy system”.

China Renewable Energy Outlook 2016 is the first renewable energy outlook from China Renewable Energy Centre (CNREC), a think tank within Energy Research Institute under NDRC. The Outlook analyses two scenarios for the future development of the Chinese energy system towards 2030.

The “Stated Policy Scenario” shows the impact of the current energy policy in China and the “High Renewable Energy Penetration Scenario” analyses the possibility of going even further with the deployment of renewable energy. In the Stated Policy Scenario, wind power capacity soars from 130 GW today to 500 GW in 2030 and solar PV develops from 43 GW to 500 GW. As a result, coal consumption decreases and CO2 emissions stabilise ca 2025.

The High Renewable Energy Penetration Scenario has 1000 GW wind power and 1100 GW solar PV in 2030. Here CO2 emissions decrease from today’s level peaking before 2020 and in 2030 the emissions are reduced by 12% compared with today. Coal consumption is reduced by 28% compared with consumption today. The analyses show that it is possible to integrate large shares of renewable energy into the Chinese energy system if the right policy measures are implemented. An efficient power market, with transparent electricity prices, is the single most important driver for cost efficient integration of renewable energy. At the same time coal power will find a new role as providers of flexibility in a system where renewable energy takes over the role of back-bone of the power supply.

China Renewable Energy Outlook has been developed as part of the larger program for boosting renewable energy in China, supported by the Children’s Investment Fund Foundation and the Danish Government.

In Suzhou the Danish Deputy Permanent Secretary at the Danish Ministry of Energy, Utilities and Climate highlighted the importance of comprehensive studies like the China Renewable Energy Outlook. “The Outlook clearly shows the importance of flexibility in the power system. The Danish experiences show that coal fired power plants can be operated very flexibly and we are able to integrate very large amount of wind power, thanks to flexible power plants, efficient power markets and flexible use of the electric interconnectors”.

China Renewable Energy Outlook 2016 is the first issue from CNREC. After the launch in Suzhou the work on next year’s outlook begins together with the US based National Renewable Energy Laboratory, the Danish Energy Agency, and the new German partners GIZ, Agora Energiewende and DENA.

China Renewable Energy Outlook 2016 is available for download on CNREC’s website or you can download it here

 

Danmark 2012: 30% wind power and no curtailment at all – how is it possible?

Share

2012 was a new record year for wind power in Denmark. Last year the wind power production in Denmark amounted to 30% of the Danish electricity consumption, while in 2011 the figure was 28,2%. This is of course good news for the global environment but due to Denmark’s small size the biggest contribution to the global environment might not be the CO2 reduction itself but the Danish showcase: It is possible to have a high share of fluctuating electricity production in the energy system without curtailment at all. And 30% is only a step towards the even more ambitious target of 50% in 2020. Right now the next off-shore wind farm is being established in Denmark – see the pictures here. (The picture below is the Danish wind farm Middelgrunden near Copenhagen on a cloudy October day in 2012).

Middelgrunden near Copenhagen

But what is the secret behind the large share of wind power, and what can China learn from Denmark?

A number of factors enables the high wind power penetration. Denmark has strong transmission lines to the neighbouring countries and access to hydro power storage in Norway. And a well functioning electricity market ensures optimal use of these interconnectors and the optimal combination of wind power and hydro power. The dynamic pricing of electricity created by the electricity market send price signals hour by hour to the producers and consumers. When the electricity production is high due to wind power and combined heat and power production (CHP), the electricity price is low; and when the wind power production is low (or zero) the price gets higher. This system also gives strong incentives for the power producers to make their thermal power plants more flexible. In facts, some of the coal fired power plants in Denmark can produce electricity and heat at a level of 10% of their maximum capacity. In China the requirements for minimum production is 50% of the max. capacity for the coal-fired power plants. All Danish CHP plants have also heat storage attached, which makes it easier to decouple heat and power production. When the electricity price is high, the CHP plants produces electricity and surplus heat can be stored in the heat storage, which basically is a large water tank. When the electricity price is low, the heat consumption is covered by the heat storage alone. And when the electricity price is very low, it can be beneficial to use electricity to warm up the water in the heat storage instead of running the thermal CHP plant. The combination of wind power, hydro power and thermal CHP plants with heat storage gives a very flexible system which is the physical explanation behind the high RE share in the Danish electricity supply.

To fully understand the Danish success of integrating wind power, you should also take into account the institutional and the “mental” framework for the electricity supply sector. In many countries – also in China – wind power is often regarded as an “add-on” to the “normal” electricity supply based on thermal power plants – fossil fuel or nuclear. The add-on RE power then is supposed to take care of its own problems, e.g. balancing the fluctuating production, and if it is not possible, then the easy solution is to curtail it, e.g. to stop the production from the wind farms, because the wind farm is causing the problem. But in Denmark, wind power is regarding as an integrated part of the electricity supply. Balancing problems is therefore a system problem, not a problem for the wind farms. This mental change in the perception of the electricity system is important for solving the integration challenges. Also the institutional set-up is important. Years ago the electricity sector was one integrated monopoly. Today the Danish grid operator (or Transmission System Operator – TSO) have been totally independent of the electricity producers for more than 12 years and it acts totally neutrally towards all power producers. Furthermore the large power producers in Denmark owns a large share of the wind power plants and integrate them into their portfolio of power plants in the daily operation. And by setting ambitious goals for the further development of RE power in Denmark (50% in 2020, 100% in 2050) the Danish government encourage both the TSO and the power producers to integrate RE in their planning process. The long term grid planning is thereby targeted at making these goal feasible, not only in Denmark but also in a European context, where the European TSO’s makes 10 years grid plans every second year.

And what are the lessons learned for China?

Firstly it is important to start considering RE power as part of the whole electricity system, not as an add-on to the thermal power system. Secondly it is urgent to setup economic incentives for flexibility for the power producers and for the use of local and regional transmission lines. Dynamic pricing is essential, but it is not necessary to introduce a complete market-setup to create this – a system with the system dispatch centres as vehicles for flexibility could be establish without a full market, like in Denmark where the electricity market evolved over a number of years, starting with more simple measures. When such economic incentives are in place, I am quite sure that the technical solution like flexible thermal power plant and heat storage at the CHP plants would develop rapidly.

Also an integrated planning process combining grid planning with planning for energy efficiency and energy supply would strengthen the integration of renewables, the development of smart grids and the use of the energy demand as part of the overall system flexibility. Maybe China could get inspiration from the European approach with the 10 year grid development plans and market studies with an even longer time horizon.

Of course China is China, and she has to develop her own solutions to the energy challenges. The Danish experiences and lessons in integration of RE can however support the analytic development of measures, methodologies and processes, which are necessary for the development of a sustainable energy system with a high share of RE in China. The Sino-Danish RED program is one example on how China and Denmark work together on such a development.

 

ERI: Make NEA an Energy Ministry focusing on demand side and non-fossil fuels

Share

In a remarkable clear report “China Energy Policy” the Energy Research Institute under NDRC (ERI) recommends much more focus on the energy demand side and on non-fossil energy supply. ERI recommends to strengthen in energy administration by increasing the National Energy Administration grow into an Energy Ministry taking more responsibility for the energy demand side from other ministries. Not only the energy intensity should be controlled but also the total energy consumption. And non-fossil fuels should have priority in the supply chain, reducing the current heavy dependency on coal and oil. Taxes and other financial policies should be the main driver for the future deployment of non-fossil fuels – basically renewables and nuclear power.

Stop expansion of long-distance transport of energy

Another interesting recommendation is to let import substitute long distance transport of coal and electricity from the North West China to the large energy consumers in the South East China. The idea that China should strive for coal self-sufficiency should be abandoned. Instead ERI suggest that the growth in energy consumption in the South East China should be covered by increased import of coal and LNG. Actually ERI finds that China by increasing the import of LNG could increase it’s pricing power. Last but not least ERI recommends that long-distance transport of electricity using Ultra High Voltage (UHV) transmission lines should be avoided due to the high cost and the increased risk for nation-wide power outages. The power supply of the South East coastal regions should be up to the the region itself. This recommendation is in sharp contrast to the current State Grid strategy where the UHV lines have an important role. Also the ERI recommendation could reduce the possibilities for obtaining a high share of renewables in China’s energy system as the resources of wind power and solar energy are focused in the North and North West of China. But nevertheless an interesting viewpoint worth further analyses in i.e. long term scenario analyses.

National and global conclusions and recommendations

“China Energy Policy” is a comprehensive analysis of the next five years development of the energy system in China, including 12 conclusions and 10 policy recommendations, covering both national  and international topics. Very interesting reading for everyone interested in the Chinese viewpoint on national and global energy policy. The executive summary can be found on this link, and a hardcopy of the whole report can be purchased on the ERI web site.

 

Reducing Beijings air pollution – steps in the right direction

Share

In the small streets of Beijing is is very common to see bike-trucks loaded with coal briquettes, especially when the heating season starts. These briquettes fits nicely into the small stoves in the hutongs and has been the prime source of energy for heating and cooking for the households in Beijing. But the coal burning is contributing to the heavy air pollution in Beijing and the Beijing government thus wants to reduce the use of the briquettes.

coal briquettes in China

Since 2003 (after a pilot period from 2001) the government has supported a program for installing electricity for heating and cooking in inner Beijing. In 2012 21,000 households will get rid of the coal stove which brings the total number of households switching from coal to electricity to more than 200,000 since the beginning of the program. The households receive a subsidy to the electricity price in the night time in order to make it able to compete with the cheap coal. See the information from NDRC here (in Chinese)

The massive amount of cars in Beijing are often blamed for the air pollution. But actually the coal consumption is a worse polluter. Of course the coal fired coal plants in the Beijing area are big sinners but also these small stoves which leads the pollution directly into the streets and houses are very unhealthy – like the London smog years ago, that mainly was created by small coal stoves. So this program is definitely a step in the right direction for the whitings. In other areas in Beijing district heating is a more sustainable solution. Beijing has Chinas largest district heating company, Beijing District Heating Group which has extensive cooperation with international companies including Danish companies e.g. as part of the energy cooperation between the City of Copenhagen and the City of Beijing. One of the challenging issues regarding district heating is to change the payment from an area-based payment to a payment based on actual consumption. This is needed in the process of enhancing energy efficiency but requires installation of meters and a new set-up of accounting – a long-term process.

Beijing District Heating Group owns some of the power plants in the Beijing area, delivering heat to the district heating system. And the power plants does not only contribute to the local pollution but also to the global CO2 emission. If you want to monitor the emission of CO2 from power plants in Beijing (or other places in the world) have a look at the Carma website. I haven’t checked the accuracy of the Chinese data, but the web site in it self look interesting. As mentioned in an earlier blog, Beijing is about to change the coal fired power plants into natural gas fired plants before 2015, and this should of course be reflected on the web site when the changes happens.

The Beijing air-pollution is still a major problem for people living in the city. But the steps taken are all steps in the right direction – and I would say, the steps are more than needed!

 

Shale gas in China – upsides and downsides

Share

China wants to step up the utilisation of shale gas. According to an article in China Daily, the National Energy Administration aims for annual shale gas output of 6.5 billion cubic meter by 2015. The administration has said the 12th Five-Year Plan (2011-15) will lay the foundations of large-scale production during the subsequent plan, when it aims for production of 100 billion cubic meter a year.

Ministry of Land and Resources data show that China has shale gas resources of 134 trillion cubic meters, of which 25 trillion cubic meters are recoverable, meaning that the country has surpassed theUnited States as the owner of the world’s biggest reserves of the unconventional gas. A study carried out by the US EIA estimates the technically recoverable shale gas resources even higher, to 1275 trillion cubic feet, equivalent to around 36 trillion cubic meters.

The use of natural gas in China is favorable from several viewpoints. Compared to the use of coal natural gas is cleaner, and both the local and the global environment will benefit from a substitution of coal based power production with a gas based. Exploration of the huge amount of shale gas will also reduce the dependence of imported fossil fuel in China.

But the use of natural gas in shale rock formations also has its flip-side. The gas is tied to the shale rock formations and the exploration requires special techniques. Here is what EIA writes about the exploration of shale gas in the US: “Hydraulic fracturing (commonly called “hydrofracking,” or “fracking,” or “fracing”) of shale rock formations is opening up large reserves of gas that were previously too expensive to develop. Hydrofracking involves pumping liquids under high pressure into a well to fracture the rock and allow gas to escape from tiny pockets in the rock. However, there are some potential environmental concerns that are also associated with the production of shale gas:

  • The fracturing of wells requires large amounts of water. In some areas of the country, significant use of water for shale gas production may affect the availability of water for other uses, and can affect aquatic habitats.
  • If mismanaged, hydraulic fracturing fluid — which may contain potentially hazardous chemicals — can be released by spills, leaks, faulty well construction, or other exposure pathways. Any such releases can contaminate surrounding areas.
  • Hydrofracturing also produces large amounts of wastewater, which may contain dissolved chemicals and other contaminants that require treatment before disposal or reuse. Because of the quantities of water used and the complexities inherent in treating some of the wastewater components, treatment and disposal is an important and challenging issue.
  • According to the United States Geological Survey, hydraulic fracturing “causes small earthquakes, but they are almost always too small to be a safety concern. In addition to natural gas, fracking fluids and formation waters are returned to the surface. These wastewaters are frequently disposed of by injection into deep wells. The injection of wastewater into the subsurface can cause earthquakes that are large enough to be felt and may cause damage.””

Considering the present and future difficulties with sufficient water supply and environmental protection in China it is necessary carefully to consider how the shale gas can be exploited in a sustainable way. Luckily it seams that Ministry of Land and Resources is aware of this. As Mr. Pan Jiping from ministry mentions to China Daily: “Survey and evaluation activity related to China’s shale gas reserves, which is still at the preliminary stage, is a key issue before China goes to commercial production”.
Pan adds that further technological breakthroughs and industry support policies are needed to draw companies into the sector and propel its growth.